Machine Learning Power Generation Prediction

This tool uses machine learning to predict solar power generation based on weather conditions and system parameters. The model has been trained on historical data to provide accurate predictions for various scenarios.

Model Performance Metrics
  • Mean Squared Error (MSE): 0.2337
  • Root Mean Squared Error (RMSE): 0.4834
  • Mean Absolute Error (MAE): 0.2149
  • R-squared: 0.8099

Sample Predictions

Below are sample predictions from the model for different input scenarios:

Scenario Input Parameters Predicted Power (kW)
Scenario 1
  • ☀️ Irradiance: 449.45 W/m²
  • 🌡️ Temp: 0.18°C
  • ☁️ Cloud: 26.17%
  • ⚙️ System: 67.6 kW
  • 📐 Tilt: 25.74°
1.94 kW
Scenario 2
  • ☀️ Irradiance: 37.72 W/m²
  • 🌡️ Temp: -6.82°C
  • ☁️ Cloud: 91.51%
  • ⚙️ System: 10.17 kW
  • 📐 Tilt: 28.41°
0.0 kW
Scenario 3
  • ☀️ Irradiance: 770.44 W/m²
  • 🌡️ Temp: 31.7°C
  • ☁️ Cloud: 97.68%
  • ⚙️ System: 55.78 kW
  • 📐 Tilt: 38.25°
1.47 kW
Scenario 4
  • ☀️ Irradiance: 62.02 W/m²
  • 🌡️ Temp: -8.26°C
  • ☁️ Cloud: 80.26%
  • ⚙️ System: 43.91 kW
  • 📐 Tilt: 3.63°
0.04 kW
Scenario 5
  • ☀️ Irradiance: 123.75 W/m²
  • 🌡️ Temp: -0.81°C
  • ☁️ Cloud: 34.06%
  • ⚙️ System: 7.66 kW
  • 📐 Tilt: 5.55°
0.0 kW

Apply to Your Project

Select one of your solar projects to analyze with the ML model:

Prediction Result

Estimated power generation: 0.0 kW

Annual estimated production: 0.0 MWh

Data Visualizations

Solar Irradiance vs. Power Output
Cloud Cover vs. Power Output
Temperature vs. Power Output
Panel Efficiency vs. Power Output